
Parallel Bandreduction and Tridiagonalization�Christian Bischofy Mercedes Marquesz Xiaobai SunyANL-MCS-P347-0193Published in the Proceedings of the Sixth SIAM Conference on Parallel Processing for Scienti�cComputing, R. Sincovec, Ed., pp. 383{390, SIAM, 1993.AbstractThis paper presents a parallel implementation of a blocked band reduction algorithmfor symmetric matrices suggested by Bischof and Sun. The reduction to tridiagonal orblock tridiagonal form is a special case of this algorithm. A blocked double toruswrap mapping is used as the underlying data distribution and the so-called WYrepresentation is employed to represent block orthogonal transformations. Preliminaryperformance results on the Intel Delta indicate that the algorithm is well-suited toa MIMD computing environment and that the use of a block approach signi�cantlyimproves performance.1 IntroductionReduction to tridiagonal form is a major step in eigenvalue computations for symmetricmatrices. If the matrix is full, the conventional Householder tridiagonalization approach [13,p. 276] or block variants thereof [12] is the method of choice. These two approaches alsounderlie the parallel implementations described for example in [15] and [10].The approach described in this paper, on the other hand, follows the band reductionframework suggested by Bischof and Sun [7]. The standard approach, which eliminatesall subdiagonals at one time, is a special case, but \piecemeal" approaches are possible aswell, as illustrated in Figure 1. The \piecemeal" approach was shown to be attractive incomparison to previously suggested band reduction schemes [20, 21, 18, 19] in that it allowstradeo�s between
ops and storage.�This work was supported by the Applied and Computational Mathematics Program, Defense AdvancedResearch Projects Agency, under contract DM28E04120, and by the O�ce of Scienti�c Computing, U.S.Department of Energy, under Contract W-31-109-Eng-38.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue,Argonne, IL 60439zDepartment of Computer Science, University of Texas at Austin, Austin, TX 78712. This work wasperformed while the author was visiting the Mathematics and Computer Science Division of ArgonneNational LaboratoryFig. 1. Reduction to Tridiagonal Form by a Sequence of Bandreductions1

POST

QR PRE
SYM

nb

Fig. 2. Band Reduction PrimitiveIn the next section, we will brie
y review the idea behind this band reduction approach,and in particular show that it allows in a very natural fashion for the use of so-called \blockalgorithms." In Section 3, we brie
y outline our parallel implementation and in Section 4we present preliminary performance results. Lastly, we summarize our �ndings.2 A Blocked Bandreduction AlgorithmThis section gives a brief introduction into the algorithmic framework suggested in [7]. Forreasons of brevity, we omit tedious detail and try to convey a general understanding of thenature of the algorithm, in particular with respect to the various degrees of parallelism thatit embodies.Our algorithm employs essentially only one primitive, namely an update acting upon asubmatrix of the form shown in Figure 2. It involves the following steps:QR: The reduction of a trapezoidal matrix T (say) with nb columns to upper triangularform R0 ! via Householder reductions and the accumulation of transformationsWand Y such that T = (I �WY) R0 ! :W and Y are of the same size as T and are accumulated according to what is called\method 1" in [8].PRE: The application of the block orthogonal transformation I � WY to a matrix B(say) from the left, i.e. B (I �WY)TB:SYM: The application of I �WY to a matrix C (say) from the left and the right, i.e.C (I �WY)TC(I �WY):POST: The application of I � WY to a matrix D (say) from the right, i.e. D D(I �WY):The so-called \WY representation" of a series of Householder transformations waschosen to allow for the use of matrix-matrix operations instead of matrix-vector operationsin applying the orthogonal transformation. This has a very bene�cial e�ect on architectures

b

nb

zero out

"bulge"

d

Fig. 3. First Block Bandreduction Step.
zero out

bulgeFig. 4. Chasing the Bulge.employing a memory hierarchy, since it greatly reduces the amount of data movementrequired [8, 4, 5, 1].To see how this algorithmic primitive is used, let us consider an example. Figure 3shows the reduction of d subdiagonals in nb columns of a matrix with initial bandwidth b.In this �gure, as in the following ones, only the update on the lower triangle is shown. Wesee that in zeroing out the d� nb trapezoid, we generate a \bulge". To avoid more �ll-inwhen zeroing out the next d�nb subdiagonal block, we now �rst must zero out the �rst nbcolumns of the bulge. This is shown in Figure 4. We see that in removing the �rst d� nbcolumns of the bulge, we create another bulge further down. The �rst d � nb columns ofthis bulge are then removed in the same fashion.We see that the band reduction algorithm has two main stages, namely band reductionand bulge chasing and that the computational primitive shown in Figure 2 takes care of3

zero out

bulgeFig. 5. Parallelism Within one Bandreductionboth of them.It is also worth pointing out that the band reduction of the next d � nb subdiagonalmatrix can begin before the bulge chasing associated with the �rst band reduction has beencompleted. This is shown in Figure 5. Hence, depending on the matrix size n, the initialbandwidth b, the number d of subdiagonals to be reduced, and the block size nb, thereis a fair amount of potential overlap between the bulge chasing steps associated with thereduction of di�erent d�nb subdiagonal blocks. We also note that this paradigm implicitlyrequires that nb � b�d, so if d = b�1 (that is, we reduce the matrix directly to tridiagonalform) we are restricted to nb = 1.We remark that there is another degree of parallelism if we employ this scheme in a\piecemeal" bandreduction approach as shown for example in Figure 1. To see this, notethat we could start a further reduction of the band as soon as the previous bandreductionhas progressed far enough to be ahead of the bulge generated by the reduction sequenceinitiated by the narrower band.Lastly, we note that if the accumulation of the orthogonal transformation matrix Q isrequired, every orthogonal reduction of width nb necessitates the update of a n � nb stripof Q from the right. This is the same kernel as in the POST step.3 A Parallel ImplementationTo distribute the matrix across a distributed-memory machine, we chose a blocked two-dimensional torus wrapping (see, for example [17, 11, 10]). A scalar wrap mapping and one-dimensional (i.e. row or column oriented distributions) are special cases of this mapping.This mapping also has been selected in other e�orts to develop linear algebra basis softwarefor massively parallel machines, for example the ScaLAPACK project [9, 11]. We alsoassume that our underlying hardware is logically con�gured as a p� p mesh, and that onlyone process is active on every processor.While the code relies heavily on the key primitive shown in Figure 2, a parallelimplementation of this primitive for a block 2-D torus wrapped data distribution is byno means a trivial task. In particular it turns out that if one wants to exploit symmetry,the implementation of the SYM step may involve a noncontiguous group of processors

1 2 3 4 5
2

4

6

8

10

block size
M

fl
op

s
pe

r
pr

oc
es

so
r

local matrix size = 360

local matrix size = 720Fig. 6. In
uence of Block Size on (block) Tridiagonalization.on the same row or column of the mesh. Hence, to develop a portable code, and toallow a maintainable implementation of this code, we chose to base our implementation onthe Chamelon parallel programming tools [14]. Chamelon's primitives (such as broadcastor global summation) support arbitrary process groups, and several such \computationalcontexts" may be active at any given point in time. This greatly simpli�es programming,since, for example, a \broadcast" will automatically involve only the members of thiscomputing context.Our code is still under development, and at the moment the code for unblockedHouseholder tridiagonalization, blocked reduction of dense matrix to block tridiagonal form(i.e. nb subdiagonals), and blocked and unblocked band reduction are functional. We donot yet exploit symmetry, we are not yet able to reduce a block tridiagonal matrix to scalartridiagonal form, and for simplicity we currently assume that the matrix size divides evenlyby the block size. We also note that the Chamelon tools currently provide only unoptimized\fan-in/fan-out" broadcast and global sum primitives (see, for example [22, 3]) which aresubstantially slower than primitives that are optimized for the Intel Delta (e.g. [2, 16]).These issues will be addressed in future versions of our code.4 Preliminary Performance ResultsIn this section, we present preliminary performance results that we have obtained witha double-precision version of our code running on 64 processors of the Intel Delta. Thepurpose of these experiments was to gain insight into the behavior of our implementationand to validate the algorithmic choices that we had made.First, let us consider the e�ect that blocking has on the execution of the algorithm.Figure 6 shows the sustained per-processor execution rate that is obtained when a fullmatrix is reduced to banded form with nb subdiagonals, and the transformation matrix Qis not accumulated. All n � nb subdiagonals are reduced at the same time, so we do notemploy a \piecemeal" approach here. We see that the block approach is signi�cantly faster,in particular for larger local matrix sizes. Hence we expect this approach to be superior,even when we add the �nal bandreduction from nb to 1 subdiagonals which we currentlyhave not implemented yet. In our experience, choosing a bandwidth larger than �ve didnot result in a further performance increase.Next, we show the per-processor sustained performance of the (block)tridiagonalreduction of a full matrix with and without accumulating Q for various matrix sizes. We5

200 400 600 800

2

4

6

8

10

12

M
fl

op
s

pe
r

pr
oc

es
so

r

local matrix size

Without accumulating Q

nb = 1

nb = 5

200 400 600 800

2

4

6

8

10

12

M
fl

op
s

pe
r

pr
oc

es
so

r

local matrix size

With accumulating Q

nb = 1

nb = 5

Fig. 7. In
uence of Problem Size on (block) Tridiagonalization on 8� 8 Partition.
200 400 600 800

2

4

6

8

10

12

M
fl

op
s

pe
r

pr
oc

es
so

r

Without accumulating Q

nb = 5

local matrix size

nb = 1

200 400 600 800

2

4

6

8

10

12

nb = 1

nb = 5

M
fl

op
s

pe
r

pr
oc

es
so

r

With accumulating Q

local matrix sizeFig. 8. In
uence of Problem Size on (block) Tridiagonalization on 16� 4 Partition.see again that the blocked approach is always superior to the unblocked approach. We alsonote that in particular for smaller matrix sizes the accumulation of Q leads to a signi�cantincrease in the M
op rate. This is not surprising since the accumulation of Q requires muchless communication in relation to computation than the tridiagonal reduction.Exploiting the freedom that the generality of the Chamelon system provided us, we alsoperformed the same suite of tests on a physical 16�4 partition, which we viewed as an 8�8logical mesh. These results are shown in Figure 8. Performance degrades somewhat, butnot dramatically. These results con�rm us in our decision to base our implementation onprogramming tools that directly support our logical view of the machine, and hide possiblemachine-speci�c improvements in that layer instead of directly embedding them in ourcode.Lastly, Figure 9 shows the per-processor performance that we obtain for a \true" bandreduction. In these experiments, 240 subdiagonals are removed from a matrix of order 5760with initially 720 subdiagonals, and a matrix of order 2880 with initially 360 subdiagonals,respectively. The transformation matrix Q is not accumulated. In contrast to the previousexperiments, these reductions execute the \bulge chasing" that was described in Section 2.We see that, not surprisingly, a true band reduction performs much slower than a (block)tridiagonalization, but again the choice of a blocked approach pays o�.

0 2 4 6 8
1

1.5

2

2.5

3

block size
M

fl
op

s
pe

r
pr

oc
es

so
r

n = 5760, b = 720, d = 240

n = 2880, b = 360, d = 240Fig. 9. In
uence of Block Size on Band Reduction5 ConclusionsThis paper presented an implementation of a blocked band reduction framework forsymmetric matrices. A blocked double torus wrap mapping is used as the underlyingdata distribution and the so-called WY representation is employed for the block orthogonaltransformations. Preliminary performance results on the Intel Delta indicate that thealgorithm is well-suited to a MIMD computing environment and that the use of a blockapproach signi�cantly improves performance.We are working to incorporate exploitation of symmetry as well as to separate the\mapping block size" used for the data layout and the \QR block size" used in theorthogonal reductions which currently are assumed to be the same. We are also working onincorporating better tuned communication routines in the Chamelon programming systemthat our implementation builds on. Lastly we mention that, in the end, we plan toexploit the divide-and-conquer nature of the tridiagonalization of matrices with only 0and 1 eigenvalues [6] as it arises in the ISDA eigenvalue solver framework [17]. Withthe 2D torus wrapped data mapping, this approach would not signi�cantly reduce thecommunication requirements of the code, but would approximately halve the number ofarithmetic operations required.AcknowledgementsThe authors would like to thank Bill Gropp for his help and support with the Chamelonprogramming system. We also thank Steven Huss-Lederman and Anna Tsao for manyhelpful discussions during the course of this work.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User's Guide, SIAM, Philadelphia,PA, 1992.[2] M. Barnett, R. Little�eld, D. G. Payne, and R. van de Geijn, E�cient communicationprimitives on mesh architectures with hardware routing, in Proceedings of the Sixth SIAMConference on Parallel Processing for Scient�c Computing, R. Sincovec, ed., Philadelphia,1993, SIAM.[3] M. Barnett, D. Payne, and R. van de Geijn, Optimal broadcasting in mesh-connectedarchitectures, Tech. Rep. TR-91-38, Department of Computer Science, University of Texasat Austin, 1991. 7

[4] C. H. Bischof, Computing the singular value decomposition on a distributed system of vectorprocessors, Parallel Computing, 11 (1989), pp. 171{186.[5] , A pipelined block QR decomposition algorithm., in Parallel Processing for Scienti�cComputing, G. Rodrigue, ed., Philadelphia, 1989, SIAM Press, pp. 3{7.[6] C. H. Bischof and X. Sun, A divide-and-conquer method for computing complementary invariantsubspaces of symmetric matrices, Tech. Rep. MCS{P286{0192, Mathematics and ComputerScience Division, Argonne National Laboratory, 1992.[7] , A framework for band reduction and tridiagonalization of symmetric matrices, Tech. Rep.MCS{P298{0392, Mathematics and Computer Science Division, Argonne National Laboratory,1992.[8] C. H. Bischof and C. F. Van Loan, The WY representation for products of Householdermatrices, SIAM Journal on Scienti�c and Statistical Computing, 8 (1987), pp. s2{s13.[9] J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker, LAPACK for distributed-memorymachines: The next generation, in Proceedings of the Sixth SIAM Conference on ParallelProcessing for Scient�c Computing, R. Sincovec, ed., Philadelphia, 1993, SIAM.[10] J. Dongarra and R. van de Geijn, Reduction to condensed form for the eigenvalue problem ondistributed-memory architectures, Parallel Computer, 18 (1992), pp. 973{982.[11] J. Dongarra, R. van de Geijn, and D. Walker, A look at scalable dense linear algebra libraries,Tech. Rep. TR CS-92-155, Computer Science Department, The University of Tennessee, May1992.[12] J. J. Dongarra, S. J. Hammarling, and D. C. Sorensen, Block reduction of matrices to condensedform for eigenvalue computations, Tech. Rep. MCS{TM{99, Mathematics and ComputerScience Division, Argonne National Laboratory, September 1987.[13] G. H. Golub and C. F. V. Loan, Matrix Computations, The Johns Hopkins University Press,1983.[14] W. Gropp and B. Smith, Chamelon: Parallel programming tools user manual, tech. rep., Math-ematics and Computer Science Division, Argonne National Laboratory, 1993. unpublisheddraft.[15] B. Hendrikson and D. Womble, The torus-wrap mapping for dense matrix calculations onmassively parallel computers, Tech. Rep. SAND92-0792, Sandia National Laboratories, 1992.[16] S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang, Matrix multiplication on the inteltouchstone delta, in Proceedings of the Sixth SIAM Conference on Parallel Processing forScient�c Computing, R. Sincovec, ed., Philadelphia, 1993, SIAM.[17] S. Huss-Lederman, A. Tsao, and G. Zhang, A parallel implementation of the invariant subspacedecomposition algorithm for dense symmetric matrices, in Proceedings of the Sixth SIAMConference on Parallel Processing for Scient�c Computing, R. Sincovec, ed., Philadelphia,1993, SIAM.[18] L. Kaufman, Banded eigenvalue solvers on vector machines, ACM Transactions on Mathemat-ical Software, 10 (1984), pp. 73{86.[19] B. Lang, Parallele Reduktion symmetrischer Bandmatrizen auf Tridiagonalgestalt, PhD thesis,Universit�at Karlsruhe (TH), 1991.[20] H. Rutishauser, On Jacobi rotation patterns, in Proc. of Symposia in Applied Mathematics, Vol.15, Experimental Arithmetic, High Speed Computing and Mathematics, 1963, pp. 219{239.[21] H. R. Schwarz, Tridiagonalization of a symmetric band matrix, Numerische Mathematik, 12(1968), pp. 231{241.[22] R. van de Geijn, On global combine operations, Tech. Rep. CS-91-129, Computer ScienceDepartment, The University of Tennessee, 1991. to appear in the Journal on Parallel andDistributed Computing.

